Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[N'-(9H-fluoren-9-vlidene)benzohydrazidato- $\kappa^2 N'$,O]copper(II)

Yan-Ling Guo,^a* Wei Dou,^b Wei-Sheng Liu^b and Hong-Rui Zhang^b

^aNuclear Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China Correspondence e-mail: guoyanling@lzu.edu.cn

Received 27 July 2011; accepted 22 September 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.012 Å; disorder in main residue; R factor = 0.070; wR factor = 0.227; data-to-parameter ratio = 11.8.

In the title complex, $[Cu(C_{20}H_{13}N_2O)_2]$, the Cu^{II} ion is tetracoordinated by an N₂O₂ set of two ligands in a distorted rectangular-planar geometry. The dihedral angle between the two coordinated five-membered metalla rings is $37.5 (3)^\circ$. The molecular configuration is stabilized by two C-H···O and two $C-H \cdot \cdot \cdot N$ intramolecular hydrogen bonds. The crystal packing is dominated by van der Waals interactions. Three atoms of the phenyl ring of the benzohydrazidate moiety are disordered over two sets of sites in a 0.625 (18):0.375 (18) ratio.

Related literature

For general backgound to the biological and pharmacological activity of aroylhydrazones, see Ranford et al. (1998); Zhong et al. (2007); Wang et al. (2009); Li et al. (2010). For Schiff base coordination modes, see: El-Sherif (2009); Yang et al. (2006); Carcelli et al. (1995).

Experimental

Crystal data

β

$[Cu(C_{20}H_{13}N_2O)_2]$	V = 2997.4 (6) Å
$M_r = 658.19$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 14.437 (2) Å	$\mu = 0.77 \text{ mm}^{-1}$
b = 25.882 (3) Å	T = 293 K
c = 8.1047 (2) Å	$0.29 \times 0.14 \times 0.0$
$\beta = 98.205 \ (3)^{\circ}$	

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.807, \ T_{\max} = 0.955$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.070$	127 restraints
$wR(F^2) = 0.227$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.59 \text{ e} \text{ Å}^{-3}$
5331 reflections	$\Delta \rho_{\rm min} = -0.70 \ {\rm e} \ {\rm \AA}^{-3}$
452 parameters	

2997.4 (6) Å³

 \times 0.14 \times 0.06 mm

15492 measured reflections

5331 independent reflections 2230 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.131$

Table 1

```
Selected bond lengths (Å).
```

Cu1-O2	1.881 (5)	Cu1-N3	1.986 (6)
Cu1-O1	1.890 (5)	Cu1-N2	1.999 (6)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C3-H3···N1	0.93	2.37	2.888 (10)	115
C11-H11···O2	0.93	2.40	2.918 (10)	115
C23-H23···O1	0.93	2.39	3.007 (10)	124
$C31-H31\cdots N4$	0.93	2.38	2.898 (9)	115

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We are grateful to the National Natural Science Foundation of China Research (grants 20771048 and 20621091) and the Fundamental Research Funds for the Central Universities (grant Nos. lzujbky-2010-27 and lzujbky-2010-29) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2365).

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carcelli, M., Pelizzi, C., Pelizzi, G., Mazza, P. & Zani, F. (1995). J. Organomet. Chem. 488, 55–61.
- El-Sherif, A. A. (2009). Inorg. Chim. Acta, 362, 4991-5000.
- Li, H. G., Yang, Z. Y., Wang, B. D. & Wu, J. C. (2010). J. Organomet. Chem. 695, 415–422.
- Ranford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226–1231.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, Q., Yang, Z. Y., Qi, G. F. & Qin, D. D. (2009). Eur. J. Med. Chem. 44, 2425–2433.
- Yang, Z. Y., Wang, B. D. & Li, Y. H. (2006). J. Organomet. Chem. 691, 4159– 4166.
- Zhong, X., Wei, H. L., Liu, W. S., Wang, D. Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774–3777.

Acta Cryst. (2011). E67, m1484-m1485 [doi:10.1107/S1600536811038931]

Bis[N'-(9H-fluoren-9-ylidene)benzohydrazidato- $\kappa^2 N', O$]copper(II)

Y.-L. Guo, W. Dou, W.-S. Liu and H.-R. Zhang

Comment

Aroylhydrazones have attracted much attention for many years because of their biological and pharmacological activities (Ranford *et al.*, 1998; Zhong *et al.*, 2007; Wang *et al.*, 2009; Li *et al.*, 2010), and their easy coordination with transition , lanthanide , and main group metals with versatile coordination modes also prompts the interests of inorganic chemists (El-Sherif, 2009; Yang *et al.*, 2006; Carcelli *et al.*, 1995). Our research group is interested in bidentate aroylhydrazone Schiff bases derived from 9*H*-fluoren-9-one. We report here the crystal structure of the title complex (I). The crystal structure of complex (I) is illustrated in Figure 1. Selected bond lengths are given in Table 1. The structure of Cu^{II} complex shows that the central Cu(II) ion is surrounded by two nitrogen atoms (N2 and N3) with Cu—N distances of 1.999 (6)Å and 1.986 (6) Å, and two oxygen atoms (O1 and O2) with Cu—O distances of 1.890 (5)Å and 1.881 (5) Å, forming a distorted rectangle-planar geometry. The ligands in complex (I) are in the enol form. The molecular structure is stabilized by three C—H…O and three C—H…N intramolecular hydrogen bonds, Table 2. The crystal packing is stabilized by van der Waals interactions.

Experimental

A solution containing hydrated $Cu(OAc)_2$ (0.15 mmol) and the ligand *N*-(9*H*-fluoren-9-ylidene)benzohydrazide (0.30 mmol) in 15 cm of EtOH/DMF (2:1, v:v) was refluxed for 6 h. The precipitates thus produced were collected, washed several times with warm ethanol and dried *in vacuo*. Dark green single crystals suitable for X-ray diffraction analyses were obtained by slow evaporation of a solution of complex(I) in DMSO. Atoms C38,C39 & C40 are disordered and were modelled using a split model with refinend population parameters of 0.625(18)/0.375 (18)

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$. Atoms C38, C39 & C40 are disordered and were modelled using a split model with refined population parameters of 0.625 (18)/0.375 (18).

Figures

Fig. 1. View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The hydrogen bonds are showed as dashed line.

Bis[N'-(9H-fluoren-9-ylidene)benzohydrazidato- $\kappa^2 N'$,O]copper(II)

F(000) = 1356

 $\theta = 2.8 - 18.4^{\circ}$

 $\mu = 0.77 \text{ mm}^{-1}$

T = 293 K

Block, green

 $0.29 \times 0.14 \times 0.06 \text{ mm}$

 $D_{\rm x} = 1.459 {\rm Mg m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1436 reflections

Crystal data

[Cu(C₂₀H₁₃N₂O)₂] $M_r = 658.19$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 14.437 (2) Å b = 25.882 (3) Å c = 8.1047 (2) Å $\beta = 98.205$ (3)° V = 2997.4 (6) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	5331 independent reflections
Radiation source: fine-focus sealed tube	2230 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.131$
phi and ω scans	$\theta_{\text{max}} = 25.1^{\circ}, \theta_{\text{min}} = 1.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -17 \rightarrow 17$
$T_{\min} = 0.807, \ T_{\max} = 0.955$	$k = -30 \rightarrow 25$
15492 measured reflections	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.070$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.227$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0807P)^2 + 2.1941P]$ where $P = (F_o^2 + 2F_c^2)/3$
5331 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
452 parameters	$\Delta \rho_{max} = 0.59 \text{ e} \text{ Å}^{-3}$
127 restraints	$\Delta \rho_{min} = -0.70 \text{ e } \text{\AA}^{-3}$

Special details

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C40B	-0.0047 (13)	0.3112 (6)	1.038 (4)	0.063 (6)	0.375 (18)
H40B	0.0586	0.3030	1.0559	0.075*	0.375 (18)
Cu1	0.20775 (6)	0.43559 (4)	0.93743 (12)	0.0450 (4)	
C1	0.4472 (6)	0.2777 (3)	1.0219 (10)	0.046 (2)	
C2	0.4509 (5)	0.3302 (3)	1.0635 (10)	0.042 (2)	
C3	0.5272 (5)	0.3499 (3)	1.1633 (11)	0.051 (2)	
Н3	0.5300	0.3847	1.1921	0.062*	
C4	0.5998 (6)	0.3168 (4)	1.2201 (12)	0.065 (3)	
H4	0.6519	0.3297	1.2884	0.078*	
C5	0.5971 (6)	0.2657 (4)	1.1787 (13)	0.073 (3)	
Н5	0.6470	0.2442	1.2185	0.087*	
C6	0.5202 (6)	0.2459 (3)	1.0774 (12)	0.059 (2)	
H6	0.5182	0.2112	1.0476	0.070*	
C7	0.3594 (6)	0.2663 (3)	0.9136 (10)	0.046 (2)	
C8	0.3236 (6)	0.2209 (3)	0.8465 (11)	0.054 (2)	
H8	0.3562	0.1902	0.8700	0.064*	
C9	0.2387 (7)	0.2209 (3)	0.7436 (11)	0.058 (2)	
H9	0.2129	0.1901	0.6998	0.070*	
C10	0.1914 (6)	0.2678 (3)	0.7055 (11)	0.059 (2)	
H10	0.1355	0.2681	0.6324	0.071*	
C11	0.2272 (6)	0.3133 (3)	0.7757 (10)	0.051 (2)	
H11	0.1957	0.3443	0.7503	0.062*	
C12	0.3096 (5)	0.3127 (3)	0.8833 (10)	0.045 (2)	
C13	0.3615 (5)	0.3537 (3)	0.9830 (9)	0.0403 (19)	
C14	0.3626 (5)	0.4804 (3)	1.0841 (9)	0.0383 (19)	
C15	0.4194 (5)	0.5219 (3)	1.1753 (10)	0.045 (2)	
C16	0.3900 (6)	0.5718 (3)	1.1627 (12)	0.063 (3)	
H16	0.3338	0.5800	1.0968	0.076*	
C17	0.4435 (7)	0.6108 (4)	1.2478 (14)	0.079 (3)	
H17	0.4229	0.6448	1.2383	0.095*	
C18	0.5245 (7)	0.5994 (4)	1.3434 (13)	0.074 (3)	
H18	0.5597	0.6257	1.4005	0.089*	
C19	0.5556 (6)	0.5496 (4)	1.3573 (14)	0.085 (3)	
H19	0.6111	0.5416	1.4258	0.102*	
C20	0.5039 (6)	0.5109 (3)	1.2684 (13)	0.071 (3)	
H20	0.5268	0.4773	1.2721	0.086*	
C21	0.0866 (5)	0.5813 (3)	0.5806 (9)	0.041 (2)	
C22	0.1356 (5)	0.5405 (3)	0.6667 (9)	0.0388 (19)	
C23	0.2302 (6)	0.5343 (3)	0.6566 (10)	0.051 (2)	
H23	0.2637	0.5074	0.7127	0.061*	
C24	0.2735 (6)	0.5684 (4)	0.5627 (11)	0.063 (2)	
H24	0.3371	0.5645	0.5577	0.076*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C25	0.2258 (6)	0.6081 (4)	0.4760 (11)	0.064 (3)	
H25	0.2563	0.6301	0.4109	0.076*	
C26	0.1300 (6)	0.6151 (3)	0.4868 (11)	0.057 (2)	
H26	0.0969	0.6423	0.4311	0.069*	
C27	-0.0120 (6)	0.5776 (3)	0.6001 (10)	0.044 (2)	
C28	-0.0856 (6)	0.6088 (3)	0.5426 (11)	0.058 (2)	
H28	-0.0761	0.6386	0.4828	0.070*	
C29	-0.1738 (6)	0.5961 (4)	0.5736 (11)	0.064 (3)	
H29	-0.2241	0.6174	0.5352	0.077*	
C30	-0.1880 (6)	0.5519 (3)	0.6611 (11)	0.060 (3)	
H30	-0.2484	0.5433	0.6785	0.071*	
C31	-0.1143 (5)	0.5200 (3)	0.7240 (10)	0.047 (2)	
H31	-0.1241	0.4907	0.7859	0.056*	
C32	-0.0264 (5)	0.5330 (3)	0.6920 (9)	0.0391 (19)	
C33	0.0677 (5)	0.5100 (3)	0.7419 (9)	0.0358 (18)	
C34	0.0387 (5)	0.3958 (3)	0.9363 (10)	0.043 (2)	
C35	-0.0326 (5)	0.3590 (3)	0.9726 (10)	0.050(2)	
C36	-0.1235 (5)	0.3734 (3)	0.9799 (11)	0.066 (3)	
H36	-0.1412	0.4077	0.9625	0.080*	
C37	-0.1880 (6)	0.3375 (3)	1.0124 (12)	0.093 (4)	
H37A	-0.2381	0.3466	1.0383	0.112*	0.50
H37B	-0.2481	0.3456	0.9943	0.112*	0.50
C38A	-0.1667 (8)	0.2850 (4)	1.003 (2)	0.066 (4)	0.625 (18)
H38A	-0.2112	0.2603	1.0206	0.079*	0.625 (18)
C39A	-0.0803 (9)	0.2695 (4)	0.967 (2)	0.070 (4)	0.625 (18)
H39A	-0.0677	0.2346	0.9530	0.084*	0.625 (18)
C40A	-0.0125 (9)	0.3066 (4)	0.953 (2)	0.063 (4)	0.625 (18)
H40A	0.0463	0.2967	0.9300	0.076*	0.625 (18)
C38B	-0.1612 (13)	0.2901 (6)	1.082 (4)	0.074 (6)	0.375 (18)
H38B	-0.2028	0.2690	1.1286	0.089*	0.375 (18)
C39B	-0.0692 (12)	0.2756 (6)	1.078 (4)	0.069 (5)	0.375 (18)
H39B	-0.0507	0.2417	1.1032	0.082*	0.375 (18)
N1	0.3951 (4)	0.4335 (2)	1.0919 (8)	0.0445 (16)	
N2	0.3319 (4)	0.4013 (2)	0.9993 (8)	0.0412 (16)	
N3	0.0894 (4)	0.4678 (2)	0.8305 (8)	0.0377 (15)	
N4	0.0121 (4)	0.4397 (2)	0.8676 (7)	0.0402 (15)	
O1	0.2795 (3)	0.49479 (18)	1.0070 (7)	0.0481 (15)	
O2	0.1258 (3)	0.38160 (19)	0.9738 (7)	0.0505 (15)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C40B	0.061 (8)	0.056 (8)	0.070 (9)	0.002 (7)	0.003 (7)	0.013 (7)
Cu1	0.0386 (6)	0.0385 (6)	0.0539 (7)	0.0002 (5)	-0.0067 (5)	0.0015 (5)
C1	0.046 (5)	0.046 (5)	0.045 (5)	0.005 (4)	0.004 (4)	0.004 (4)
C2	0.041 (5)	0.044 (5)	0.043 (5)	0.006 (4)	0.011 (4)	0.004 (4)
C3	0.038 (5)	0.041 (5)	0.071 (7)	0.002 (4)	-0.006 (5)	0.003 (4)
C4	0.047 (6)	0.066 (7)	0.080 (7)	0.001 (5)	-0.003 (5)	0.005 (5)

C5	0.045 (6)	0.065 (7)	0.105 (9)	0.015 (5)	0.000 (6)	0.020 (6)
C6	0.054 (6)	0.042 (5)	0.081 (7)	0.012 (5)	0.013 (5)	0.004 (5)
C7	0.054 (5)	0.039 (5)	0.046 (5)	0.001 (4)	0.010 (4)	0.001 (4)
C8	0.059 (6)	0.044 (5)	0.061 (6)	-0.002 (4)	0.018 (5)	0.001 (4)
С9	0.077 (7)	0.045 (5)	0.053 (6)	-0.005 (5)	0.007 (5)	-0.009 (4)
C10	0.058 (6)	0.060 (6)	0.059 (6)	-0.005 (5)	0.005 (5)	-0.008 (5)
C11	0.060 (6)	0.048 (5)	0.043 (5)	0.003 (4)	-0.003 (5)	-0.006 (4)
C12	0.046 (5)	0.046 (5)	0.040 (5)	-0.003 (4)	0.002 (4)	-0.003 (4)
C13	0.039 (5)	0.042 (5)	0.040 (5)	0.009 (4)	0.004 (4)	0.004 (4)
C14	0.039 (5)	0.038 (5)	0.039 (5)	-0.002 (4)	0.011 (4)	-0.002 (4)
C15	0.043 (5)	0.041 (5)	0.052 (6)	-0.011 (4)	0.013 (4)	-0.008 (4)
C16	0.055 (6)	0.043 (6)	0.085 (7)	0.002 (4)	-0.018 (5)	-0.007 (5)
C17	0.072 (7)	0.048 (6)	0.113 (9)	-0.015 (5)	-0.004 (7)	-0.020 (6)
C18	0.061 (7)	0.069 (7)	0.092 (8)	-0.017 (6)	0.007 (6)	-0.034 (6)
C19	0.044 (6)	0.079 (8)	0.118 (10)	-0.001 (5)	-0.033 (6)	-0.029 (6)
C20	0.054 (6)	0.053 (6)	0.098 (8)	0.011 (5)	-0.020 (6)	-0.026 (5)
C21	0.045 (5)	0.039 (5)	0.038 (5)	-0.005 (4)	-0.002 (4)	-0.003 (4)
C22	0.039 (5)	0.037 (4)	0.037 (5)	0.000 (4)	-0.003 (4)	0.000 (4)
C23	0.047 (5)	0.055 (6)	0.049 (6)	0.002 (4)	0.003 (4)	0.002 (4)
C24	0.047 (6)	0.087 (7)	0.054 (6)	-0.009 (5)	0.001 (5)	0.008 (5)
C25	0.051 (6)	0.074 (7)	0.065 (7)	-0.016 (5)	0.003 (5)	0.009 (5)
C26	0.053 (6)	0.054 (6)	0.060 (6)	-0.008 (5)	-0.007 (5)	0.011 (5)
C27	0.057 (6)	0.034 (5)	0.038 (5)	0.007 (4)	-0.003 (4)	0.000 (4)
C28	0.066 (6)	0.052 (6)	0.055 (6)	0.012 (5)	0.002 (5)	0.006 (4)
C29	0.056 (6)	0.082 (7)	0.054 (6)	0.031 (5)	0.001 (5)	0.018 (5)
C30	0.053 (6)	0.070 (7)	0.052 (6)	0.024 (5)	-0.004 (5)	0.002 (5)
C31	0.044 (5)	0.053 (5)	0.044 (5)	0.005 (4)	0.013 (4)	0.002 (4)
C32	0.038 (5)	0.044 (5)	0.032 (5)	0.008 (4)	-0.008 (4)	-0.003 (4)
C33	0.037 (5)	0.035 (4)	0.033 (5)	0.009 (4)	-0.001 (4)	-0.002 (3)
C34	0.038 (5)	0.043 (5)	0.046 (5)	-0.001 (4)	0.003 (4)	0.001 (4)
C35	0.039 (5)	0.042 (5)	0.064 (6)	-0.004 (4)	-0.010 (4)	0.013 (4)
C36	0.044 (6)	0.064 (6)	0.094 (8)	-0.001 (5)	0.018 (5)	0.029 (5)
C37	0.061 (7)	0.096 (9)	0.126 (11)	-0.003 (6)	0.021 (7)	0.043 (7)
C38A	0.054 (6)	0.070 (7)	0.073 (8)	-0.014 (6)	0.011 (6)	0.021 (6)
C39A	0.071 (6)	0.064 (6)	0.071 (7)	-0.001 (5)	0.001 (6)	0.013 (6)
C40A	0.060 (7)	0.057 (7)	0.067 (8)	-0.003 (6)	-0.009 (6)	0.021 (6)
C38B	0.067 (8)	0.076 (8)	0.080 (9)	-0.011 (7)	0.013 (7)	0.012 (7)
C39B	0.064 (7)	0.063 (7)	0.076 (8)	0.004 (6)	0.001 (7)	0.020(7)
N1	0.037 (4)	0.040 (4)	0.053 (4)	-0.003 (3)	-0.004 (3)	-0.007 (3)
N2	0.045 (4)	0.033 (4)	0.045 (4)	-0.008(3)	0.003 (3)	-0.001 (3)
N3	0.030 (4)	0.041 (4)	0.042 (4)	-0.004 (3)	0.003 (3)	-0.005 (3)
N4	0.034 (4)	0.044 (4)	0.040 (4)	0.000 (3)	-0.002 (3)	0.003 (3)
01	0.039 (3)	0.037 (3)	0.064 (4)	0.006 (2)	-0.008(3)	0.001 (3)
02	0.032 (3)	0.045 (3)	0.070 (4)	-0.003 (3)	-0.008 (3)	0.013 (3)
Geometric pa	arameters (Å, °)					
C40B—C35		1.383 (10)	C21-	C26	1.3	68 (10)
C40B—C39B		1.383 (9)	C21-	C22	1.4	00 (10)

C40B—H40B	0.9300	C21—C27	1.457 (10)
Cu1—O2	1.881 (5)	C22—C23	1.388 (10)
Cu1—O1	1.890 (5)	C22—C33	1.460 (10)
Cu1—N3	1.986 (6)	C23—C24	1.372 (11)
Cu1—N2	1.999 (6)	С23—Н23	0.9300
C1—C6	1.362 (10)	C24—C25	1.374 (11)
C1—C2	1.399 (10)	C24—H24	0.9300
C1—C7	1.466 (11)	C25—C26	1.409 (11)
C2—C3	1.367 (10)	С25—Н25	0.9300
C2—C13	1.491 (10)	С26—Н26	0.9300
C3—C4	1.381 (11)	C27—C28	1.364 (10)
С3—Н3	0.9300	C27—C32	1.405 (10)
C4—C5	1.364 (11)	C28—C29	1.372 (11)
C4—H4	0.9300	C28—H28	0.9300
C5—C6	1.382 (12)	C29—C30	1.375 (11)
С5—Н5	0.9300	С29—Н29	0.9300
С6—Н6	0.9300	C30—C31	1.387 (10)
С7—С8	1.365 (10)	С30—Н30	0.9300
C7—C12	1.403 (10)	C31—C32	1.373 (10)
C8—C9	1.381 (11)	C31—H31	0.9300
С8—Н8	0.9300	C32—C33	1.486 (9)
C9—C10	1.405 (11)	C33—N3	1.318 (8)
С9—Н9	0.9300	C34—N4	1.299 (9)
C10-C11	1.377 (10)	C34—O2	1.303 (8)
C10—H10	0.9300	C34—C35	1.464 (9)
C11—C12	1.371 (10)	C35—C36	1.374 (7)
C11—H11	0.9300	C35—C40A	1.400 (9)
C12—C13	1.471 (10)	C36—C37	1.367 (7)
C13—N2	1.316 (8)	С36—Н36	0.9300
C14—N1	1.300 (8)	C37—C38B	1.383 (9)
C14—O1	1.325 (8)	C37—C38A	1.398 (8)
C14—C15	1.481 (10)	С37—Н37А	0.8168
C15—C16	1.360 (10)	С37—Н37В	0.8852
C15—C20	1.370 (11)	C38A—C39A	1.380 (9)
C16—C17	1.390 (11)	C38A—H38A	0.9300
С16—Н16	0.9300	C39A—C40A	1.389 (9)
C17—C18	1.341 (12)	С39А—Н39А	0.9300
С17—Н17	0.9300	C40A—H40A	0.9300
C18—C19	1.365 (12)	C38B—C39B	1.384 (9)
C18—H18	0.9300	C38B—H38B	0.9300
C19—C20	1.387 (11)	C39B—H39B	0.9300
С19—Н19	0.9300	N1—N2	1.378 (8)
С20—Н20	0.9300	N3—N4	1.400 (8)
C35—C40B—C39B	121.3 (12)	C23—C24—C25	121.9 (8)
C35—C40B—H40B	119.4	C23—C24—H24	119.0
C39B—C40B—H40B	119.4	C25—C24—H24	119.0
O2—Cu1—O1	152.3 (2)	C24—C25—C26	119.3 (8)
O2—Cu1—N3	81.9 (2)	С24—С25—Н25	120.3
O1—Cu1—N3	101.0 (2)	C26—C25—H25	120.3

O2—Cu1—N2	101.1 (2)	C21—C26—C25	118.9 (8)
O1—Cu1—N2	81.5 (2)	С21—С26—Н26	120.5
N3—Cu1—N2	168.8 (2)	C25—C26—H26	120.5
C6—C1—C2	120.4 (8)	C28—C27—C32	120.1 (8)
C6—C1—C7	129.7 (8)	C28—C27—C21	130.4 (8)
C2—C1—C7	109.8 (7)	C32—C27—C21	109.5 (7)
C3—C2—C1	120.3 (7)	C27—C28—C29	119.5 (8)
C3—C2—C13	132.9 (7)	С27—С28—Н28	120.2
C1—C2—C13	106.8 (7)	С29—С28—Н28	120.2
C2—C3—C4	118.4 (8)	C28—C29—C30	120.3 (8)
С2—С3—Н3	120.8	С28—С29—Н29	119.8
С4—С3—Н3	120.8	С30—С29—Н29	119.8
C5—C4—C3	121.7 (9)	C29—C30—C31	121.4 (8)
C5—C4—H4	119.2	С29—С30—Н30	119.3
C3—C4—H4	119.2	С31—С30—Н30	119.3
C4—C5—C6	119.9 (8)	C32—C31—C30	117.8 (8)
C4—C5—H5	120.0	С32—С31—Н31	121.1
С6—С5—Н5	120.0	С30—С31—Н31	121.1
C1—C6—C5	119.3 (8)	C31—C32—C27	120.9 (7)
C1—C6—H6	120.3	C31—C32—C33	133.1 (7)
С5—С6—Н6	120.3	C27—C32—C33	105.9 (7)
C8—C7—C12	120.8 (8)	N3—C33—C22	123.7 (7)
C8—C7—C1	131.1 (8)	N3—C33—C32	128.1 (7)
C12—C7—C1	108.1 (7)	C22—C33—C32	108.1 (6)
С7—С8—С9	119.5 (8)	N4—C34—O2	124.3 (7)
С7—С8—Н8	120.2	N4—C34—C35	118.8 (7)
С9—С8—Н8	120.2	O2—C34—C35	116.8 (7)
C8—C9—C10	119.7 (8)	C36—C35—C40B	116.9 (10)
С8—С9—Н9	120.2	C36—C35—C40A	118.8 (8)
С10—С9—Н9	120.2	C40B—C35—C40A	29.0 (12)
С11—С10—С9	120.4 (9)	C36—C35—C34	122.4 (7)
C11-C10-H10	119.8	C40B—C35—C34	119.1 (10)
С9—С10—Н10	119.8	C40A—C35—C34	116.4 (8)
C12-C11-C10	119.6 (8)	C37—C36—C35	120.3 (7)
C12—C11—H11	120.2	С37—С36—Н36	119.8
C10-C11-H11	120.2	С35—С36—Н36	119.8
C11—C12—C7	119.8 (7)	C36—C37—C38B	121.6 (9)
C11—C12—C13	132.0 (7)	C36—C37—C38A	119.3 (8)
C7—C12—C13	108.2 (7)	C38B—C37—C38A	27.0 (13)
N2-C13-C12	125.6 (7)	С36—С37—Н37А	120.5
N2-C13-C2	127.6 (7)	C38B—C37—H37A	110.9
C12—C13—C2	106.8 (7)	С38А—С37—Н37А	120.2
N1-C14-O1	125.6 (7)	С36—С37—Н37В	119.1
N1-C14-C15	118.8 (7)	С38В—С37—Н37В	119.2
O1—C14—C15	115.5 (7)	С38А—С37—Н37В	116.0
C16—C15—C20	118.7 (7)	Н37А—С37—Н37В	24.4
C16—C15—C14	120.5 (8)	C39A—C38A—C37	120.4 (9)
C20—C15—C14	120.7 (7)	C39A—C38A—H38A	119.8
C15—C16—C17	120.5 (9)	C37—C38A—H38A	119.8

C15—C16—H16	119.8	C38A—C39A—C40A	119.0 (10)
C17—C16—H16	119.8	С38А—С39А—Н39А	120.5
C18—C17—C16	120.3 (9)	С40А—С39А—Н39А	120.5
С18—С17—Н17	119.8	C39A—C40A—C35	120.1 (10)
С16—С17—Н17	119.8	C39A—C40A—H40A	120.0
C17—C18—C19	120.2 (9)	С35—С40А—Н40А	120.0
C17—C18—H18	119.9	C37—C38B—C39B	116.5 (11)
C19—C18—H18	119.9	C37—C38B—H38B	121.8
C18—C19—C20	119.5 (9)	C39B—C38B—H38B	121.8
С18—С19—Н19	120.2	C40B—C39B—C38B	120.3 (12)
C20—C19—H19	120.2	C40B—C39B—H39B	119.9
C15—C20—C19	120.6 (8)	C38B—C39B—H39B	119.9
С15—С20—Н20	119.7	C14—N1—N2	109.4 (6)
С19—С20—Н20	119.7	C13—N2—N1	115.0 (6)
C26—C21—C22	121.3 (8)	C13—N2—Cu1	133.1 (5)
C26—C21—C27	129.4 (7)	N1—N2—Cu1	111.6 (4)
C22—C21—C27	109.1 (7)	C33—N3—N4	114.4 (6)
C23—C22—C21	119.3 (7)	C33—N3—Cu1	135.0 (5)
C23—C22—C33	133.4 (7)	N4—N3—Cu1	110.5 (4)
C21—C22—C33	107.2 (7)	C34—N4—N3	110.5 (6)
C24—C23—C22	119.3 (8)	C14—O1—Cu1	109.5 (4)
С24—С23—Н23	120.4	C34—O2—Cu1	111.1 (5)
С22—С23—Н23	120.4		
C6—C1—C2—C3	-1.3 (12)	C23—C22—C33—N3	4.2 (14)
C7—C1—C2—C3	-179.6 (7)	C21—C22—C33—N3	178.9 (7)
C6—C1—C2—C13	179.7 (7)	C23—C22—C33—C32	-172.5 (8)
C7—C1—C2—C13	1.4 (9)	C21—C22—C33—C32	2.2 (8)
C1—C2—C3—C4	0.4 (12)	C31—C32—C33—N3	2.4 (14)
C13—C2—C3—C4	179.2 (8)	C27—C32—C33—N3	179.6 (7)
C2—C3—C4—C5	0.2 (14)	C31—C32—C33—C22	179.0 (8)
C3—C4—C5—C6	0.0 (15)	C27—C32—C33—C22	-3.8 (8)
C2—C1—C6—C5	1.5 (13)	C39B—C40B—C35—C36	13 (3)
C7—C1—C6—C5	179.4 (8)	C39B—C40B—C35—C40A	-89 (3)
C4—C5—C6—C1	-0.8 (14)	C39B—C40B—C35—C34	178.4 (19)
C6—C1—C7—C8	4.4 (15)	N4—C34—C35—C36	-18.0 (12)
C2—C1—C7—C8	-177.6 (8)	O2—C34—C35—C36	162.9 (7)
C6—C1—C7—C12	-176.1 (8)	N4—C34—C35—C40B	177.0 (15)
C2-C1-C7-C12	2.0 (9)	O2—C34—C35—C40B	-2.1 (17)
C12—C7—C8—C9	2.0 (12)	N4—C34—C35—C40A	144.2 (10)
C1—C7—C8—C9	-178.5 (8)	O2—C34—C35—C40A	-34.8 (12)
C7—C8—C9—C10	1.7 (13)	C40B—C35—C36—C37	-15.4 (15)
C8—C9—C10—C11	-2.8 (13)	C40A—C35—C36—C37	17.5 (12)
C9—C10—C11—C12	0.1 (13)	C34—C35—C36—C37	179.3 (8)
C10—C11—C12—C7	3.6 (12)	C35—C36—C37—C38B	17.6 (16)
C10—C11—C12—C13	-176.1 (8)	C35—C36—C37—C38A	-13.7 (10)
C8—C7—C12—C11	-4.7 (12)	C36—C37—C38A—C39A	2.5 (15)
C1—C7—C12—C11	175.7 (7)	C38B—C37—C38A—C39A	-100 (3)
C8—C7—C12—C13	175.1 (7)	C37—C38A—C39A—C40A	5(2)
C1—C7—C12—C13	-4.5 (9)	C38A—C39A—C40A—C35	-1(2)

C11—C12—C13—N2	6.7 (14)	C36—C35—C40A—C39A	-10.2 (18)
C7-C12-C13-N2	-173.1 (7)	C40B-C35-C40A-C39A	84 (2)
C11—C12—C13—C2	-174.9 (8)	C34—C35—C40A—C39A	-173.1 (12)
C7—C12—C13—C2	5.3 (9)	C36—C37—C38B—C39B	-16 (3)
C3—C2—C13—N2	-4.6 (14)	C38A—C37—C38B—C39B	78 (3)
C1—C2—C13—N2	174.3 (8)	C35—C40B—C39B—C38B	-12 (4)
C3—C2—C13—C12	177.1 (9)	C37—C38B—C39B—C40B	12 (4)
C1—C2—C13—C12	-4.1 (8)	O1-C14-N1-N2	3.4 (10)
N1-C14-C15-C16	176.4 (8)	C15—C14—N1—N2	179.9 (6)
O1-C14-C15-C16	-6.7 (11)	C12—C13—N2—N1	-176.6 (7)
N1-C14-C15-C20	-1.0 (12)	C2-C13-N2-N1	5.4 (11)
O1-C14-C15-C20	175.8 (8)	C12—C13—N2—Cu1	11.1 (12)
C20-C15-C16-C17	-2.2 (14)	C2-C13-N2-Cu1	-167.0 (6)
C14—C15—C16—C17	-179.7 (9)	C14—N1—N2—C13	173.0 (6)
C15-C16-C17-C18	-0.1 (16)	C14—N1—N2—Cu1	-13.0(7)
C16-C17-C18-C19	0.4 (17)	O2—Cu1—N2—C13	34.6 (7)
C17—C18—C19—C20	1.6 (17)	O1—Cu1—N2—C13	-173.3 (7)
C16—C15—C20—C19	4.3 (15)	N3—Cu1—N2—C13	-69.7 (15)
C14—C15—C20—C19	-178.2 (9)	O2—Cu1—N2—N1	-137.9 (5)
C18—C19—C20—C15	-4.0 (17)	O1—Cu1—N2—N1	14.2 (5)
C26-C21-C22-C23	0.0 (11)	N3—Cu1—N2—N1	117.7 (12)
C27—C21—C22—C23	175.8 (7)	C22—C33—N3—N4	-169.9 (6)
C26-C21-C22-C33	-175.5 (7)	C32—C33—N3—N4	6.2 (11)
C27—C21—C22—C33	0.3 (8)	C22—C33—N3—Cu1	14.2 (12)
C21—C22—C23—C24	0.1 (12)	C32—C33—N3—Cu1	-169.7 (5)
C33—C22—C23—C24	174.3 (8)	O2—Cu1—N3—C33	-172.5 (7)
C22—C23—C24—C25	-1.1 (13)	O1—Cu1—N3—C33	35.4 (7)
C23—C24—C25—C26	1.7 (14)	N2—Cu1—N3—C33	-66.2 (15)
C22—C21—C26—C25	0.6 (12)	O2—Cu1—N3—N4	11.5 (4)
C27—C21—C26—C25	-174.2 (8)	O1—Cu1—N3—N4	-140.6 (4)
C24—C25—C26—C21	-1.5 (13)	N2—Cu1—N3—N4	117.7 (12)
C26-C21-C27-C28	-6.3 (14)	O2—C34—N4—N3	3.7 (11)
C22—C21—C27—C28	178.4 (8)	C35—C34—N4—N3	-175.3 (6)
C26—C21—C27—C32	172.6 (8)	C33—N3—N4—C34	172.0 (7)
C22—C21—C27—C32	-2.8 (9)	Cu1—N3—N4—C34	-11.1 (7)
C32—C27—C28—C29	-0.7 (12)	N1-C14-O1-Cu1	8.5 (9)
C21—C27—C28—C29	178.0 (8)	C15—C14—O1—Cu1	-168.1 (5)
C27—C28—C29—C30	-0.4 (14)	O2—Cu1—O1—C14	86.0 (6)
C28-C29-C30-C31	1.7 (14)	N3—Cu1—O1—C14	179.5 (5)
C29—C30—C31—C32	-1.8 (13)	N2-Cu1-O1-C14	-11.6 (5)
C30-C31-C32-C27	0.7 (11)	N4—C34—O2—Cu1	6.2 (10)
C30—C31—C32—C33	177.6 (8)	C35—C34—O2—Cu1	-174.8 (6)
C28—C27—C32—C31	0.6 (11)	O1—Cu1—O2—C34	88.7 (7)
C21—C27—C32—C31	-178.4 (7)	N3—Cu1—O2—C34	-9.5 (5)
C28—C27—C32—C33	-177.1 (7)	N2—Cu1—O2—C34	-178.5 (5)
C21—C27—C32—C33	4.0 (8)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
C3—H3…N1	0.93	2.37	2.888 (10)	115
C11—H11···O2	0.93	2.40	2.918 (10)	115
C23—H23…O1	0.93	2.39	3.007 (10)	124
C31—H31…N4	0.93	2.38	2.898 (9)	115

Fig. 1